Evaluation of Leymus chinensis quality using near-infrared reflectance spectroscopy with three different statistical analyses
نویسندگان
چکیده
Due to a boom in the dairy industry in Northeast China, the hay industry has been developing rapidly. Thus, it is very important to evaluate the hay quality with a rapid and accurate method. In this research, a novel technique that combines near infrared spectroscopy (NIRs) with three different statistical analyses (MLR, PCR and PLS) was used to predict the chemical quality of sheepgrass (Leymus chinensis) in Heilongjiang Province, China including the concentrations of crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF). Firstly, the linear partial least squares regression (PLS) was performed on the spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the MLR evaluation method for CP has a potential to be used for industry requirements, as it needs less sophisticated and cheaper instrumentation using only a few wavelengths. Results show that in terms of CP, ADF and NDF, (i) the prediction accuracy in terms of CP, ADF and NDF using PLS was obviously improved compared to the PCR algorithm, and comparable or even better than results generated using the MLR algorithm; (ii) the predictions were worse compared to laboratory-based spectra with the MLR algorithmin, and poor predictions were obtained (R2, 0.62, RPD, 0.9) using MLR in terms of NDF; (iii) a satisfactory accuracy with R2 and RPD by PLS method of 0.91, 3.2 for CP, 0.89, 3.1 for ADF and 0.88, 3.0 for NDF, respectively, was obtained. Our results highlight the use of the combined NIRs-PLS method could be applied as a valuable technique to rapidly and accurately evaluate the quality of sheepgrass hay.
منابع مشابه
Estimating Nitrogen and Acid Detergent Fiber Contents of Grass Species using Near Infrared Reflectance Spectroscopy (NIRS)
Chemical assessments of forage clearly determine the forage quality; however, traditional methods of analysis are somehow time consuming, costly, and technically demanding. Near Infrared Reflectance Spectroscopy (NIRS) has been reported as a method for evaluating chemical composition of agriculture products, food, and forage and has several advantages over chemical analyses such as conducting c...
متن کاملEvaluation of macro elements in forbs species using near infrared reflectance spectroscopy
This article has no abstract.
متن کاملPotential of Near-Infrared Reflectance Spectroscopy (NIRS) to Predict Nutrient Composition of Bromus tomentellus
Determination of forage quality of available species is one of the fundamentalfactors for the management of rangelands. Near-Infrared Reflectance Spectroscopy (NIRS)was used to analysis the Nitrogen (N), Acid Detergent Fiber (ADF), Dry MatterDigestibility (DMD) and Metabolizable Energy (ME) content of three phenological stages(vegetative, flowering and seeding) of Bromus tomentellus samples in ...
متن کاملDevelopment of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...
متن کاملDetermination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares
The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...
متن کامل